1. If \(f(x) = \left(\frac{x}{1 + \frac{1}{x}} \right)^{-1} \), what is \(f\left(\frac{3}{2}\right) \)?

\[f\left(\frac{3}{2}\right) = \frac{3}{2} + 1 = \frac{5}{2} \]

2. Find all \(x \) and only those \(x \) that satisfy \(\sqrt{x + 2} = 2x + 1 \).

\[\sqrt{x + 2} = 2x + 1 \]

3. Write \(\left[(a+b)^3 - (a-b)^3\right] - \left[(a+b)^3 + (a-b)^3\right]^2 \) in the form \(k[f(a,b)]^3 \) where \(k \) is an integer and \(f(a,b) \) is an expression of two terms involving \(a \) and \(b \).

\[-4 \left[a^2 - b^2 \right]^3 = 4 \left[b^2 - a^2 \right]^3 \]

4. Express \(\sum_{n=1}^{100} \frac{1}{n(n+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \ldots + \frac{1}{10100} \) as the quotient of two relatively prime integers.

\[\frac{100}{101} \]

1. \(f(x) = \left(\frac{x^2}{x + 1} \right)^{-1} \)

\[f\left(\frac{3}{2}\right) = \frac{3^2 + 1}{\sqrt{4}} = \frac{10}{2} = 5 \]

2. \(x + 2 = 4x^2 + 4x + 1 \)

\[4x^2 + 3x - 1 = 0 \]

\[(4x - 1)(x + 1) = 0 \]

It is necessary to check the answers. \(x = -1 \) does not check, \(x = \frac{1}{4} \)

3. \(\left[(a+b)^3 - (a-b)^3\right] - \left[(a+b)^3 + (a-b)^3\right]^2 \)

\[= -4 \left[(a+b)^3 - (a-b)^3\right] = -4 \left[(a+b)(a+b)^2\right]^3 = -4 \left[a^2 - b^2\right]^3 \]

4. \(\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \)

The series may then be written

\[\sum_{n=1}^{100} \left(\frac{1}{n} - \frac{1}{n+1}\right) = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \ldots + (\frac{1}{100} - \frac{1}{101}) \]

\[= 1 - \frac{1}{101} = \frac{100}{101} \]
1. Figure 1 shows a regular octagon $ABCDEFGH$ inscribed in a circle of radius 1. Lines tangent to the circle at A and D intersect at R. What is the measure in degrees of $\angle ARD$?

2. Referring to the same inscribed octagon described in problem 1, a line tangent to the circle at C intersects the extension of AG at l. Can you see the length IC? (pun intended). Find IC.

3. The sides of a right $\triangle ABC$ have lengths a, b, and c. Each side is used as a chord of a circle having a radius equal to the length of the chord. Using A_a, A_b, and A_c to designate the areas of the circles with radii indicated by the subscript, write an equation relating A_a, A_b, and A_c.

4. Two chords of a circle having lengths of 7 and 8 intersect at right angles. The chord of length 7 is partitioned into lengths of 3 and 4, while the chord of length 8 is partitioned into lengths of 2 and 6. What is the radius of the circle?
Minnesota State High School Mathematics League
Individual Event

2004-05 Event 4C

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

44. The first two Lucas numbers are \(L_1 = 1, \ L_2 = 3 \). Successive ones are obtained from the recursion formula \(L_{n+2} = L_n + L_{n+1} \). Find the sum of the first six Lucas numbers.

504. \(G(1) = 3 \) and \(G(n) = \frac{4G(n)+1}{4} \) for integers \(n > 1 \). Find \(G(2005) \).

1,625,675.

3. Find the integer equal to \(\sum_{i=1}^{50} (i^3 + 1) \)

4. Let \(f(n) \) be the sum of the first \(n \) terms of the sequence \(0, \ 1, \ 1, \ 2, \ 2, \ 3, \ 3, \ 4, \ 4, \ 5, \ 5, \ldots \)

For example, \(f(1) = 0, \ f(2) = 1, \ f(3) = 2, \ f(4) = 4, \) etc. Derive a formula for \(f(n) \).

Hint: your answer will take the form \(f(n) = \begin{cases} \dotfill & n \text{ even} \\ \dotfill & n \text{ odd} \end{cases} \)

4. [Barbeau, Klamkin, Moseley #46]

For \(n \) even, \(n = 2k \) and

\[
f(2k) = (0+1)+ (1+2)+ (2+3)+ \ldots + [(k-1)+k] \\
= 2[1+2+ \ldots +(k-1)] + k \\
= 2 \left(\frac{k(k-1)}{2} \right) + k \\
= k^2 - k + k \\
= k^2 \\
= \left(\frac{n}{2} \right)^2 \\
\]

For \(n \) odd, \(n = 2k-1 \) and

\[
f(2k-1) = 0 + (1+1)+ (1+2)+ \ldots + [(k-1)+(k-1)] \\
= 2 \left(\frac{k(k-1)}{2} \right) = k^2 - k \\
= \frac{(n+1)^2 - n + 1}{4} \\
= \frac{n^2 - 1}{4} \\
\]

\[
f(n) = \begin{cases} \frac{n^2}{4} & n \text{ even} \\ \frac{n^2 - 1}{4} & n \text{ odd} \end{cases} \\
\]

4. [Barbeau, Klamkin, Moseley #46]
Solutions

Minnesota State High School Mathematics League
Individual Event

2004-05 Event 4D

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. Find both coordinates of the focus of the parabola having directrix $y = -3$ and vertex $(3, -2)$.

2. Answer by selecting (a), (b), or (c). The line containing $A(-423, 201)$ and $B(457, -19)$ intersects the graph of $y - 204 = -\frac{83}{351}(x + 423)$
 (a) to the left of A
 (b) between A and B
 (c) to the right of B

3. Give both coordinates of the highest point on the graph of $4x^2 + 8x + y^2 - 2y = 3$

4. The circle $x^2 + y^2 = 25$ passes through $(0, 5)$ and $(3, 4)$, and it is tangent to the line $y + 5 = 0$. Find a second circle with the same properties.

4. Let the circle be centered at (h, k);
 $[\text{distance from }(0,5)]^2 = h^2 + (k-5)^2$ \hspace{1cm} (a)
 $[\text{distance from } (3,4)]^2 = (h-3)^2 + (k-4)^2$ \hspace{1cm} (b)
 $[\text{distance from } y = -5]^2 = (k+5)^2$ \hspace{1cm} (c)

 Set (a) = (c) to get $h^2 = 20k$
 Set (b) = (c) to get $h^2 - 6h = 18k$
 $20k - 6h = 18k \Rightarrow k = 3h$.
 Then $h^2 = 20(3h)$; $h = 0$ and $h = 60$
 $r = k + 5 = 185$
Minnesota State High School Mathematics League
Team Event

2004-05 Meet 4

Each question is worth 4 points. Team members may cooperate in any way, but at the end of twenty minutes, one set of answers is to be submitted. Put answers on the lines provided.

1. Figure 1 shows a large circle centered at C, and a smaller circle tangent to it at A. BD = 9 and EF = 5. Find the diameter of (a) the smaller circle; (b) the larger circle.

 (a) 41
 (b) 50

\[\sqrt{a^2 + b^2 + c^2 + d^2} \]
\[\frac{2}{2} \]

2. Two chords of a circle intersect at right angles. The shorter chord is partitioned into lengths of a and b, while the longer chord is partitioned into lengths of c and d.
 What, in terms of a, b, c, and d, is the radius of the circle?

3. In a regular heptagonal (seven sided polygon) ABCDEFG, let \(\alpha = \angle ADB \) and set \(t = \sin \alpha \). Express \(\sin 8 \alpha \) as a polynomial of minimal possible degree in \(t \).

4. In a regular polygon ABCD... of \(n \) sides, inscribe \(\triangle ACD \). In terms of \(n \), express in degrees the measure of \(\angle ACD \).

5. Find integers \(a \) and \(b \) so that \(x^4 + 4x^3 - 2x^2 + ax + b \) is the square of a trinomial.

6. Find the largest integer \(n \) for which \(7^n \) will divide 600! (That's 600 factorial.)

Scorers!
See the note on #2 on the solution sheet.
1. [S.I. Jones, Mathematical Nuts, #21] Let \(x = DC \); radius large 0 is 9 + x; radius small 0 is \(9 + 2x \). Let M be the center of the small 0. (See Fig. 1 on Answer sheet.)

\[
EM^2 = CM^2 + CE^2 = \left(\frac{9 + 2x}{2}\right)^2 + \left(\frac{9 + x - 5}{2}\right)^2.
\]

Solve to get \(x = 16 \).

\(\text{diam (large 0) = 50} \); \(\text{diam (small 0) = 41} \).

2. See Fig. 2 on Ans. sheet for notation \(\angle COD = 2\beta \); \(\angle AOB = 2\alpha \).

Locate \(F \) on arc \(AB \) so \(\angle FOC = \angle AOB \).

Note that \(\angle FOD = \angle FOC + \angle COD = \angle AOB + \angle AOD \).

\(\Rightarrow 2\alpha + 2\beta = 2(\alpha + \beta) = \pi \)

**ie., FOD is a diameter; \(\Delta FCD \) is a right \(\Delta \). \(FC^2 = FC^2 + CD^2 = AB^2 + CD^2 \)

But \(AB^2 = b^2 + d^2 \) and \(CD^2 = a^2 + c^2 \).

Radius = \(\frac{1}{2} \text{FD} = \frac{1}{2} \sqrt{a^2 + b^2 + c^2 + d^2} \)

(Prob. 4 of Event 4B was a special case of this more general result.)

3. Given \(\alpha = \angle ADB \), we see from the arcs intercepted on the circumscribed circle that \(\angle BAD = 2\alpha \); \(\angle ABD = 4\alpha \).

Also, \(\alpha = \frac{\pi}{7} \).

\[
\sin 8\alpha = \sin (7\alpha + \alpha) = \sin (\pi + \alpha) = -\sin \alpha = -t
\]

4. The central angle subtending long \(\widehat{AB} \) is \((n-3) \frac{360}{n} \), so

\[
\angle ACD = \frac{1}{2} \left(\frac{360(n-3)}{n} \right)
\]

5. The trinomial is certainly of the form \(x^2 + mx + n \).

\[
(x^2 + mx + n)^2 = x^4 + (mx)^2 + n^2 + 2mx^3 + 2nx^2 + 2mnx + (2mn)x + (n^2)
\]

\(2m = 4, \) so \(m = 2 \)

\(m^2 + 2n = -2, \) so \(n = -3 \)

Now \(a = 2mn = -12 \)

and \(b = n^2 = 9 \)

6. The factors \(1 \cdot 2 \cdot 4 \cdot 23 \cdot 59 \cdot 89 \).

The factors \(1 \cdot 2 \cdot 4 \cdot 23 \cdot 59 \).

The factor \([7^3] \) contributes 1 more 7.

\(85 + 12 + 1 = 98 \)

Note to Scorers re #2

Reviewers point out that very different methods of solution give different looking but equivalent answers. The fact that \(ab = cd \) is key to establishing equivalence. Correct answers include

\[
r = \frac{\sqrt{(a + b)^2 + (c - d)^2}}{2} = \frac{\sqrt{a^2 + b^2 + c^2 + d^2}}{2}
\]

\[
= \frac{\sqrt{a^2 + c^2)(b^2 + d^2)}}{2a}
\]

\[
= \frac{\sqrt{(a^2 + c^2)(b^2 + d^2)}}{2a}
\]

\[
= \frac{(b^2 + d^2)(b^2 + c^2)}{2b}
\]