Acid and Base Chemistry

What comes to mind when you think acid?
General Characteristics of All Acids

• Result in the formation of Hydronium (H_3O^+)
• Most chemical formulas start with a hydrogen (H)
 • HCl, H_2SO_4, H_2CO_3
• Typically liquids or gases
• Taste sour (i.e. Lemons)
 o NEVER TASTE TO IDENTIFY ACIDS
• Can cause severe chemical burns
 • The acids wick water away
 • Exothermic reaction
 • Results in blisters, swelling, & infections
 o NEVER TOUCH TO IDENTIFY ACIDS

Don’t mess with acids, or else you’ll get burned
Common examples of Acids

- Carbonic Acid (H_2CO_3)
 - Pop
- Ascorbic Acid ($\text{HC}_6\text{H}_7\text{O}_6$)
 - Vitamin C (Lack of leads to Scurvy)
 - Many vitamins come in the form of acids
- Acetic Acid ($\text{HC}_2\text{H}_3\text{O}_2$)
 - Vinegar
- Citric Acid ($\text{HC}_6\text{H}_7\text{O}_7$)
 - Citrus Fruits, Mountain Dew
- Sulfuric Acid (H_2SO_4)
 - Battery Acid
What is an acid?

• **Definition** - Acids are substances, that when dissolved in water, increase the concentration of Hydronium (H$_3$O$^+$)
• An acid must have a proton (H$^+$) to donate!
• Strong acids ionize *completely*
 \[\text{HNO}_3(\text{l}) + \text{H}_2\text{O}(\text{l}) \rightarrow \text{H}_3\text{O}^+_{(\text{aq})} + \text{NO}_3^-_{(\text{aq})} \]
• Weak acids ionize *incompletely*
 \[\text{HF}_{(\text{aq})} + \text{H}_2\text{O}(\text{l}) \leftrightarrow \text{H}_3\text{O}^+_{(\text{aq})} + \text{F}^-_{(\text{aq})} \]
• Hydronium...
 ✓ Is a product
 ✓ Is a polyatomic ion
 ✓ \(\text{H}_2\text{O} + \text{H}^+ \rightarrow \text{H}_3\text{O}^+ \)
Why Hydronium?

Behind the reaction

\[\text{H}_2\text{O} + \text{H}^+ \rightarrow \text{H}_3\text{O}^+ \]

Provided by the acid

For example, the “\(\text{H}^+\)” is a product of the ionized (disassociated) acid.

\[\text{HCl} \rightarrow \text{H}^+ + \text{Cl}^- \]

“\(\text{H}^+\)” is often called a proton. Why?

1 Proton, 1 Electron

0 Neutrons

SO...
This proton (H\(^+\)) then joins together with water. Why?

\[
\text{H}_2\text{O} + \text{H}^+ \rightarrow \text{H}_3\text{O}^+
\]

The negative side of water (oxygen side) attracts the positive proton to form hydronium.
HCl + H₂O \rightarrow H₃O⁺ + Cl⁻

Step 1: Add acid
Step 2: Acid Disassociates
Step 3: Hydronium Forms
Acid Strength

- Acids can be strong or weak
- The greater the concentration of H_3O^+, the stronger the acid
- Strong acids
 - The acid is very soluble in water
 - Ionizes (breaks apart / disassociates) completely in aqueous solutions
 - The more it breaks apart, the stronger the concentration
- Weak acids
 - Not very soluble in water
 - Don’t ionize completely
 - Acetic Acid ($\text{HC}_2\text{H}_3\text{O}_2$)
 - Maybe only 1 in 10 break up
Acids conduct electricity

• Strong acids conduct electricity very well
 • Strong electrolyte
 • Electrolyte – A substance that, when dissolved in a solvent, increases the solvent’s conductivity.

• Weak acids are weak electrolytes
Examples of Strong Acids

These acids disassociate completely

The Big Three

1. Hydrochloric Acid (HCl)
 - Stomachs, Household Cleaner
2. Nitric Acid (HNO₃)
 - Explosives, Nitroglycerin, Car Bombs, Oklahoma City Bombing
3. Sulfuric Acid (H₂SO₄)
 - Battery Acid
Examples of Weak Acids

These acids do **NOT** ionize completely

1. Acetic Acid (HC$_2$H$_3$O$_2$; CH$_3$COOH)
 - Vinegar
2. Hydrofluoric Acid (HF)
3. Hydrosulfic Acid (H$_2$S)
Concept Check

1. What is hydronium?
 • H_3O^+
 • It’s what’s formed when an acid is added to water.

2. How do we determine acid strength?
 • Electricity, pH

3. What are characteristics of acids?
 • Liquid / Gas
 • Tastes sour
 • Causes burns
 • Molecular compound starts with “H”
• Acids are ionic substances
• Acid names are based on ionic naming rules
Naming Ionic Compounds

Ionic Compound = Metal + Non-metal

Binary – Made of two parts

1. First Part
 ✓ Always the metal (the Cation)
 ✓ Keeps its atomic name

2. Second Part
 ✓ Always the non-metal (the Anion)
 ✓ “-ide” replaces the ending of the atomic name.

Note: If a polyatomic ion is involved, the polyatomic ion keeps its name
When *naming* ionic compounds, subscripts are not included in the name due to electroneutrality.

Aluminum Sulfide

\[
\text{Al}^{+3} + \text{S}^{-2} \rightarrow \text{Al}_2\text{S}_3
\]
Modifications for acids?

Rules: To name an acid from a chemical formula

1. Identify the ionic name.
2. Eliminate the cation name.
3. Modify the anion based on the following rules.

<table>
<thead>
<tr>
<th>Anion Endings</th>
<th>Acid Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ide</td>
<td>Hydro- (stem)-ic acid</td>
</tr>
<tr>
<td>-ate</td>
<td>(stem)-ic acid</td>
</tr>
<tr>
<td>-ite</td>
<td>(stem)-ous acid</td>
</tr>
</tbody>
</table>

Example: HCl

- Ionic Name: **Hydrogen Chloride**
- Acid Name: **Hydro-chlor-ic Acid**
- Hydrochloric Acid
Example #2

Example: H_2SO_4

- Ionic Name: **Hydrogen Sulfate**
- Acid Name: **Sulfur-ic Acid (Sulfic Acid)**
- Sulfuric Acid

<table>
<thead>
<tr>
<th>Anion Endings</th>
<th>Acid Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ide</td>
<td>Hydro-(stem)-ic acid</td>
</tr>
<tr>
<td>-ate</td>
<td>(stem)-ic acid</td>
</tr>
<tr>
<td>-ite</td>
<td>(stem)-ous acid</td>
</tr>
</tbody>
</table>
Now, figure out the chemical formula from the name

Example: Hydrobromic Acid

1. Identify the stem
 • → “brom”
2. Hydro-(stem)-ic = “ide”
 • “Bromide”
3. Bromide = Bromine (Br)
 • Ion = Br^{-}
4. All acids have Hydrogen
 • Ion = H^{+}
5. Electroneutrality...
 • H^{+} + Br^{-} →
6. Hydrobromic Acid = HBr

<table>
<thead>
<tr>
<th>Anion Endings</th>
<th>Acid Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ide</td>
<td>Hydro-(stem)-ic acid</td>
</tr>
<tr>
<td>-ate</td>
<td>(stem)-ic acid</td>
</tr>
<tr>
<td>-ite</td>
<td>(stem)-ous acid</td>
</tr>
</tbody>
</table>
Example #2

Example: Carbonic Acid

1. Identify the stem
 • \(\rightarrow \) “Carbon”

2. “ic” = “ate”
 • “Carbonate”

3. Carbonate = Polyatomic \((CO_3^{-2}) \)
 • Polyatomic = \(CO_3^{-2} \)

4. All acids have Hydrogen
 • Ion = \(H^+ \)

5. Electroneutrality...
 • \(H^+ + CO_3^{-2} \rightarrow \)

6. Carbonic Acid = \(H_2CO_3 \)
Do these in your notes

<table>
<thead>
<tr>
<th>Chemical Formula</th>
<th>Ionic Name</th>
<th>Acid Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. H_3PO_4</td>
<td>Hydrogen Phosphate</td>
<td>Phosphoric Acid</td>
</tr>
<tr>
<td>2. $HClO_3$</td>
<td>Hydrogen Chlorate</td>
<td>Chloric Acid</td>
</tr>
<tr>
<td>3. H_2CO_3</td>
<td>Hydrogen Carbonate</td>
<td>Carbonic Acid</td>
</tr>
<tr>
<td>4. HCN</td>
<td>Hydrogen Cyanide</td>
<td>Hydrocyanic Acid</td>
</tr>
<tr>
<td>5. HF</td>
<td>Hydrogen Fluoride</td>
<td>Hydrofluoric Acid</td>
</tr>
<tr>
<td>6. HI</td>
<td>Hydrogen Iodide</td>
<td>Hydroiodic Acid</td>
</tr>
</tbody>
</table>
Your turn

<table>
<thead>
<tr>
<th>Acid Name</th>
<th>Rule</th>
<th>Ions</th>
<th>Chemical Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nitric acid</td>
<td>“ate”</td>
<td>H$^+$ + NO$_3^{-1}$</td>
<td>HNO$_3$</td>
</tr>
<tr>
<td>2. Sulfuric acid</td>
<td>“ate”</td>
<td>H$^+$ + SO$_4^{-2}$</td>
<td>H$_2$SO$_4$</td>
</tr>
<tr>
<td>3. Acetic acid</td>
<td>“ate”</td>
<td>H$^+$ + C$_2$H$_3$O$_2^{-1}$</td>
<td>HC$_2$H$_3$O$_2$</td>
</tr>
<tr>
<td>4. Hydroiodic acid</td>
<td>“ide”</td>
<td>H$^+$ + I$^{-1}$</td>
<td>HI</td>
</tr>
<tr>
<td>5. Hydrobromic acid</td>
<td>“ide”</td>
<td>H$^+$ + Br$^{-1}$</td>
<td>HBr</td>
</tr>
<tr>
<td>6. Hydrofluoric acid</td>
<td>“ide”</td>
<td>H$^+$ + F$^{-1}$</td>
<td>HF</td>
</tr>
</tbody>
</table>
Bases

• **Definition** – Bases are substances, that when dissolved in water, increase the concentration of hydroxide ions (OH⁻)

• \(\text{NaOH}_\text{(s)} + \text{H}_2\text{O}_\text{(l)} \rightarrow \text{Na}^+_{\text{(aq)}} + \text{OH}^-_{\text{(aq)}} \)

• \(\text{OH}^- = \text{Product} \)

• **Arrhenius Bases** – Need Water
General Characteristics of Bases

- Bases follow normal ionic naming rules
- Typically solids
- Taste bitter
- Feel slippery
- Usually end in “OH-”
- Bases are Dangerous!!!
Alkalinity

Means the base strength

- Is dependent on compound solubility (How well it breaks into ions)
- The greater the solubility, the stronger base
 - High concentration of OH$^-$
- Low solubility, weak base.
 - Low concentration of OH$^-$
Examples of Strong Bases

- Potassium Hydroxide - KOH
- Sodium Hydroxide - NaOH
- Calcium Hydroxide - Ca(OH)$_2$
- Sodium Phosphate - Na$_3$PO$_4$
Weak Bases

- Ammonia – \(\text{NH}_3 \)
- Potassium Carbonate – \(\text{K}_2\text{CO}_3 \)
- How do these produce \(\text{OH}^- \)?
 - They steal a proton from water
 \[
 \text{NH}_3(aq) + \text{H}_2\text{O}(l) \iff \text{NH}_4^+(aq) + \text{OH}^-(aq)
 \]
Naming Bases

• Bases follow normal ionic compound naming rules
 – NaOH (Sodium Hydroxide)
 – Mg(OH)$_2$ (Magnesium Hydroxide)
The Behavior of Water

- Water is *highly polar* and in *continuous motion*
 - Collisions occur
 - *Some* collisions are energetic enough to transfer H\(^+\) from one molecule to another.
 - \(\text{H}_2\text{O} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{OH}^- \) (*Self Ionization*)
 - In this situation, \([\text{H}_3\text{O}^+] = [\text{OH}^-]\)
 - \([x] = “\text{Concentration of } x”\)
 - “\(\text{H}_3\text{O}^+\)” = Acid, “\(\text{OH}^-\)” = Base
 - When these cancel one another, we have a...
 - “Neutral Solution”
 - \([\text{H}_3\text{O}^+] = [\text{OH}^-]\)
Self Ionization of Water

- In **pure** water, the \([H_3O^+]\) **always** equals the \([OH^-]\)
 - \(H_2O(l) \leftrightarrow H^+(aq) + OH^-(aq)\)

 Always forms “\(H_3O^+\)”

- Therefore, “\(H^+\)” is synonymous with “\(H_3O^+\)”

- The self ionization of water occurs at a very low, constant, measurable rate!

- For pure water, at 25°C...
 - \([H_3O^+] = 1.0 \times 10^{-7} \text{ M (0.0000001 mols/L)}\)
 - \([OH^-] = 1.0 \times 10^{-7} \text{ M (0.0000001 mols/L)}\)
In solutions, $[\text{H}^+]$ & $[\text{OH}^-]$ have an Indirect Relationship

- When the $[\text{H}_3\text{O}^+]$ goes up, the $[\text{OH}^-]$ goes down.
- When the $[\text{H}_3\text{O}^+]$ goes down, the $[\text{OH}^-]$ goes up.
- This relationship can be summarized by...

$$[\text{H}_3\text{O}^+] \times [\text{OH}^-] = 1.0 \times 10^{-14}$$
Mathematical Relationships

• *This is true for all aqueous solutions!*

• For example, pure water...

 • \([H_3O^+] = 1.0 \times 10^{-7} \text{ M}\)

 • \([OH^-] = 1.0 \times 10^{-7} \text{ M}\)

\[
(1.0 \times 10^{-7} \text{ M}) \times (1.0 \times 10^{-7} \text{ M}) = 1.0 \times 10^{-14}
\]

• 1.0×10⁻¹⁴ is a constant for all aqueous solutions!

• \(K_W = 1.0 \times 10^{-14}\)

 • \(K_W\) is called the “Ion-product Constant for Water”

• Therefore, for acids & bases, the product of the \([H_3O^+]\)

 \(\text{times the } [OH^-]\) is always equal to 1.00×10⁻¹⁴ M
Visualizing the Relationship

\[[\text{H}^+] \ & \ [\text{OH}^-] \ \text{in 3 Solutions...} \]
The Big Idea

- All solutions contain
 - Some acid \(\text{H}_3\text{O}^+\)
 - Some base \(\text{OH}^-\), and
 - The product of their concentrations is always \(1.0 \times 10^{-14} (K_W)\)
Practice Problem #1

What is the \([\text{OH}^-]\) in a \(3.00 \times 10^{-5}\) M solution of HCl?

\[
\text{HCl}_{(l)} + \text{H}_2\text{O} \rightarrow \text{H}^+_{(aq)} + \text{Cl}^-_{(aq)}
\]

\(3.00\times10^{-5}\) M HCl

• HCl ionizes completely
• Therefore, \([\text{H}^+] = 3.00\times10^{-5}\) M
• If \([\text{H}_3\text{O}^+] \times [\text{OH}^-] = 1.0\times10^{-14}\)
• Then...

\[
[\text{OH}^-] = \frac{1.0\times10^{-14}}{3.00\times10^{-5}}
\]

\[
[\text{OH}^-] = 3.33\times10^{-10}
\]

\([\text{H}_3\text{O}^+]) > [\text{OH}^-]

Therefore, Acidic Solution
Practice Problem #2

What is the $\left[H_3O^+ \right]$ in a 6.00×10^{-4} M solution of the strong base NaOH?

NaOH(s) + H$_2$O \rightarrow Na$^+$$_{(aq)}$ + OH$^-$_{(aq)}

6.00×10$^{-4}$ M NaOH

• NaOH ionizes completely
• Therefore, $[OH^-] = 6.00 \times 10^{-4}$ M
• If $[H_3O^+] \times [OH^-] = 1.0 \times 10^{-14}$
• Then...

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{6.00 \times 10^{-4}}$$

$$[H_3O^+] = 1.67 \times 10^{-11}$$

$[OH^-] > [H_3O^+]$

Therefore, Basic (Alkaline) Solution
Practice Problem #3

An aqueous solution is prepared by dissolving 86.5 g of Chloric Acid in water to make 3.25 L of solution. What is \([\text{OH}^-]\) in this solution?

\[
\frac{86.5 \text{ g HClO}_3}{1} \times \frac{1 \text{ mol HClO}_3}{84.458 \text{ g HClO}_3} = 1.02 \text{ mol HClO}_3
\]

\[
M = \frac{1.02 \text{ mols HClO}_3}{3.25 \text{ L}} = 0.314 \text{ M HClO}_3
\]

\[
[\text{H}_3\text{O}^+] = 0.314 \text{ M}
\]

\[
[\text{OH}^-] = \frac{1.0 \times 10^{-14}}{0.314}
\]

\[
[\text{OH}^-] = 3.18 \times 10^{-14}
\]

\[
[\text{H}_3\text{O}^+] > [\text{OH}^-]
\]

Therefore, Acidic Solution
Stating concentrations can be confusing and inefficient!

For example

“In solution A, the concentration of Hydronium is 1.67×10^{-11} M and the concentration of Hydroxide is 6.00×10^{-4} M.”
The pH Scale!!!
pH is a statement of concentration

- **pH** – a measure of concentration of H⁺ (a.k.a. H₃O⁺)

\[
pH = -\log[H^+] \]

\[
[H_3O^+] = 1.67 \times 10^{-11} \text{ M}
\]

Calculator looks like... “-log(1.67E-11)”

\[
pH = 10.777 \text{ (3 sig figs, count only decimals)}
\]
The pH scale

- Numbers range from 1 to 14
- A pH of 7.00 = Neutral
 - \([H^+] = 1.0 \times 10^{-7}\)
 - \([OH^{-}] = 1.0 \times 10^{-7}\)
 - \([H^+] = [OH^{-}]\)
- pH numbers lower than 7.00 are acidic
 - \([H^+] > [OH^{-}]\)
- pH numbers higher than 7.00 are alkaline
 - \([OH^{-}] > [H^+]\)
<table>
<thead>
<tr>
<th>$[H^+]$</th>
<th>$[H^+]$</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>1.0×10^{-1}</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>1.0×10^{-2}</td>
<td>0.01</td>
<td>2</td>
</tr>
<tr>
<td>1.0×10^{-3}</td>
<td>0.001</td>
<td>3</td>
</tr>
<tr>
<td>1.0×10^{-4}</td>
<td>0.0001</td>
<td>4</td>
</tr>
<tr>
<td>1.0×10^{-5}</td>
<td>0.00001</td>
<td>5</td>
</tr>
<tr>
<td>1.0×10^{-6}</td>
<td>0.000001</td>
<td>6</td>
</tr>
<tr>
<td>1.0×10^{-7}</td>
<td>0.0000001</td>
<td>7*</td>
</tr>
<tr>
<td>1.0×10^{-8}</td>
<td>0.00000001</td>
<td>8</td>
</tr>
<tr>
<td>1.0×10^{-9}</td>
<td>0.000000001</td>
<td>9</td>
</tr>
<tr>
<td>1.0×10^{-10}</td>
<td>0.0000000001</td>
<td>10</td>
</tr>
<tr>
<td>1.0×10^{-11}</td>
<td>0.00000000001</td>
<td>11</td>
</tr>
<tr>
<td>1.0×10^{-12}</td>
<td>0.000000000001</td>
<td>12</td>
</tr>
<tr>
<td>1.0×10^{-13}</td>
<td>0.0000000000001</td>
<td>13</td>
</tr>
<tr>
<td>1.0×10^{-14}</td>
<td>0.00000000000001</td>
<td>14</td>
</tr>
</tbody>
</table>

Each step in the pH scale is a factor of 10.

An acidic solution with a pH of 3 has a concentration of Hydronium that is 10 times greater than a solution with a pH of 4!

Coefficient must be “1” for exponent to match the pH.
Getting $[H^+]$ from pH

If the pH of a solution is 3.70, what is the concentration of Hydronium?

$$[H^+] = 10^{-pH}$$

$$[H^+] = 10^{-3.70}$$

$$[H^+] = 1.995262315 \times 10^{-4}$$

3.70 has 2 significant figures.

$$[H^+] = 2.0 \times 10^{-4}$$
pH Values for Different Concentrations of Hydronium (Logarithmic Scale)
\(pOH \)

We can do the same for the \([OH^-]\)

- \(pOH \) – measures concentration of \(OH^- \)
 \[pOH = -\log [OH^-] \]
- \(pH + pOH = 14 \)
 \begin{align*}
 \text{pH} & = 14 - pOH \\
 pOH & = 14 - pH
 \end{align*}
The pOH scale

- Numbers range from 1 to 14
- A pOH of 7.00 = Neutral
 - $[\text{H}^+] = 1.0 \times 10^{-7}$
 - $[\text{OH}^-] = 1.0 \times 10^{-7}$
 - $[\text{H}^+] = [\text{OH}^-]$
- pOH numbers > 7.00 are acidic
 - $[\text{H}^+] > [\text{OH}^-]$
- pOH numbers < 7.00 are alkaline
 - $[\text{OH}^-] > [\text{H}^+]$
Getting $[\text{OH}^-]$ from pOH

If the pOH of a solution is 8.157, what is the concentration of Hydroxide?

$$[\text{OH}^-] = 10^{-\text{pOH}}$$

$$[\text{OH}^-] = 10^{-8.157}$$

$$[\text{OH}^-] = 6.966265141 \times 10^{-9}$$

8.157 has 3 significant figures.

$$[\text{OH}^-] = 6.97 \times 10^{-9}$$
The pH & pOH relationship

<table>
<thead>
<tr>
<th>$[H^+]$</th>
<th>$[OH^-]$</th>
<th>pH</th>
<th>pOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0×10^{-14}</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>1.0×10^{-1}</td>
<td>1.0×10^{-13}</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>1.0×10^{-2}</td>
<td>1.0×10^{-12}</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>1.0×10^{-3}</td>
<td>1.0×10^{-11}</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>1.0×10^{-4}</td>
<td>1.0×10^{-10}</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>1.0×10^{-5}</td>
<td>1.0×10^{-9}</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>1.0×10^{-6}</td>
<td>1.0×10^{-8}</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1.0×10^{-7}</td>
<td>1.0×10^{-7}</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1.0×10^{-8}</td>
<td>1.0×10^{-6}</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>1.0×10^{-9}</td>
<td>1.0×10^{-5}</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>1.0×10^{-10}</td>
<td>1.0×10^{-4}</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>1.0×10^{-11}</td>
<td>1.0×10^{-3}</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>1.0×10^{-12}</td>
<td>1.0×10^{-2}</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>1.0×10^{-13}</td>
<td>1.0×10^{-1}</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>1.0×10^{-14}</td>
<td>1.0</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>
Big Ideas to Remember

- Molarity (M) of acid = $[\text{H}_3\text{O}^+]$
- Molarity (M) of base = $[\text{OH}^-]$
- $K_w = [\text{H}_3\text{O}^+] [\text{OH}^-] = 1.00 \times 10^{-14} \text{ M}$
- $\text{pH} + \text{pOH} = 14$
Practice Problem #1

What is the pH of a 0.00010 M solution of HCl?

✓ $[H^+] = 1.0 \times 10^{-4}$
✓ $pH = -\log[H^+]$
✓ $-\log(1.0 \times 10^{-4})$
✓ $pH = 4.00$

2 Significant Figures
Practice Problem #2

What’s the pOH of 0.0365 M Ba(OH)$_2$, a strong base?

✓ $[\text{pOH}^-] = 3.65 \times 10^{-2}$
✓ $\text{pOH} = -\log[\text{OH}^-]$
✓ $-\log(3.65 \times 10^{-2})$
✓ $\text{pOH} = 1.438$

3 Significant Figures
Practice Problem #3

• If the pH of a solution is 4.250, what is the \([\text{OH}^-]\)?

• 2 different ways to solve, do both
 • Find pOH, then find \([\text{OH}^-]\) or…
 • Find \([\text{H}_3\text{O}^+]\), then find \([\text{OH}^-]\)

• \(\text{pOH} = 14 - 4.250 = 9.750\)
• \([\text{OH}^-] = 10^{-\text{pOH}} = 10^{-9.750} = 1.78 \times 10^{-10}\)
• Or….
• \([\text{H}_3\text{O}^+] = 10^{-\text{pH}} = 10^{-4.250} = 5.62 \times 10^{-5}\)
• \([\text{OH}^-] = 1.00 \times 10^{-14} / 5.62 \times 10^{-5} = 1.78 \times 10^{-10}\)