The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 15 minutes for this event.

1. Express \(\frac{x^4 - xy^3 + x^3y - y^4}{x^2 - y^2} \) as a polynomial in \(x \) and \(y \).

2. Jane is half as old as Terry will be in six years when the sum of their ages will be 75. How old is Jane now?

3. Solve the system

\[
\begin{align*}
x + 6y + 5z &= 3 \\
y - z &= 2
\end{align*}
\]

4. Find the largest value of \(s \) and the smallest value of \(t \) such that for all \(x \) satisfying \(-6 < -2x < 8\) and for all \(y \) satisfying \(1 < |y - 4| < 3\),

\[
\begin{align*}
(a) & \quad s = -28 \quad t = 21 \\
(b) & \quad s = -4 \quad t = 3
\end{align*}
\]
1. Figure 1 shows a square $ABCD$ with sides of length 4. Concentric circles, one inscribed in the square, the other circumscribed about it, bound a washer shaped region. What is the area of this region?

4π

2. The difference between the largest and smallest angles of a parallelogram is 66°. What is the measure of the smallest angle?

$57°$

3. Figure 3 shows a square $ABCD$ with sides of length 4, and four inscribed semicircles centered at E, F, G, and H. These semicircles intersect at K and overlap to form four (shaded) leaves. What is the total area of the four shaded leaves?

$8\pi - 16$

4. Figure 4 shows four points connected by six lines, three short ones each having length 1, and three others each having the same length $x > 1$. Find x, accurate to three places to the right of the decimal.

1.618

(Refer to the figure at the right)

1. Radius of the large circle is $KC = R, R^2 = 4 + 4 = 8$. Radius of the small circle is $r = 2$. The enclosed area $= \pi R^2 - \pi r^2 = 4\pi$.

2. Let $\alpha = \text{small } \angle$, $B = \text{large } \angle$.

$\begin{align*}
\alpha & = 66 \\
B + \alpha & = 180 \\
2B & = 246 \\
\alpha & = 57^\circ
\end{align*}$

3. Focus on square $DEKH$

Cross hatch area $= 2 - \frac{1}{4} \pi^2$

Leaf area $= 4 - 2 \text{ (Cross hatch area)}$

$= 4 - 2 (4 - \pi) = 2\pi - 4$

Area of 4 leaves $= 4 (2\pi - 4)$

From $\triangle MNQ$, $(1 + t)^2 + h^2 = (1 + 2t)^2$

From $\triangle NPQ$, $h^2 + t^2 = 1; h^2 = 1 - t^2$

Substitute,

$(1 + t)^2 + (1 - t^2) = (1 + 2t)^2$

Simplify, $4t^2 + 2t - 1$

$t = \frac{-1 \pm \sqrt{5}}{4}$. Use $t = \frac{\sqrt{5} - 1}{4} \approx 0.30902$
1. Let α and β be two angles, $0 < \alpha < \beta < 2\pi$, such that $\sin \alpha = \sin \beta = -\frac{1}{2}$. What is the radian measure of $\beta - \alpha$?

\[
\frac{2\pi}{3}
\]

2. Figure 2 shows an equilateral triangle inscribed in a right isosceles triangle having legs of length 4. Give the length of the sides of the equilateral triangle in exact, rationalized form.

\[
\frac{4\sqrt{6}}{3}
\]

3. A cooler contains 4 bottles of carbonated mineral water and 6 bottles of non-carbonated spring water. Not realizing there is a choice, Alicia and Beth each plunge their hands into the ice and grab a bottle. What is the probability that both girls get the same kind of water?

\[
\frac{7}{15}
\]

4. A complex number $a + bi$ lies on the unit circle if $a^2 + b^2 = 1$. Express each of the two roots of $x^2 = 4 + 3i$ in the form $r(a + bi)$ where the real numbers r, a, and b are expressed in exact form and $a + bi$ lies on the unit circle.

\[
\frac{\sqrt{5}}{2} \left(\frac{3}{\sqrt{10}} + \frac{i}{\sqrt{10}} \right)
\]

or

\[
\frac{\sqrt{5}}{2} \left(\frac{3}{\sqrt{10}} - \frac{i}{\sqrt{10}} \right)
\]

1. $\beta - \alpha = \frac{11\pi}{6} - \frac{7\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3}$

2. Apply the law of sines to $\triangle ABC$.

\[
\frac{x}{\sin 45^\circ} = \frac{4}{\sin 120^\circ}
\]

\[
x = \frac{4 \cdot \frac{\sqrt{3}}{2}}{\sqrt{2}} = \frac{4\sqrt{3}}{3}
\]

3. $\triangle ABC$.

\[
3^\circ \rightarrow M \left(\frac{6}{45}, \frac{6}{45} \right) \text{ both mineral}
\]

\[
4^\circ \rightarrow M \left(\frac{6}{45}, \frac{6}{45} \right)
\]

\[
\frac{1}{2} \rightarrow \left(\frac{12}{45}, \frac{15}{45} \right) = \frac{7}{15}
\]

4. $(4 + 3i) = 5 \left(\frac{4}{5} + \frac{3}{5}i \right) = 5 (\cos \alpha + i \sin \alpha)$

where $\alpha = \cos^{-1} \frac{4}{5}$.

$(4 + 3i) = \pm 5 \left(\cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2} \right)$

$\cos \frac{\alpha}{2} = \sqrt{\frac{1 + 4/5}{2}} = \frac{3}{\sqrt{10}}$; $\sin \frac{\alpha}{2} = \sqrt{1 - 4/5} = \frac{1}{\sqrt{10}}$
2006-07 Tournament Event D

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 15 minutes for this event.

THIS IS A NO CALCULATOR EVENT

1. Express $4^{31} - (4^3)^2$ as a single integer.

2. Point A is in the first quadrant, located so that with O designating the origin, $OA = 2$ and OA makes an angle of 30° with the positive x-axis. Write an equation of the line through A, perpendicular to OA.

 \[y - 1 = -\sqrt{3} (x - \sqrt{3}) \quad \text{or} \quad \sqrt{3} x + y = 4 \]

3. The quadratic equation $x^2 + bx + c = 0$ has roots $1 + m + \sqrt{1 + m^2}$ and $\frac{2m}{1 + m + \sqrt{1 + m^2}}$. Express b as a linear expression in m.

 \[b = -2 - 2m \]

4. Using common logarithms (that is, logarithms to the base 10), $\log 5 = 0.69897$. Find $\log \sqrt{\frac{10}{5}}$ rounded correct to three places to the right of the decimal.

 \[\log \sqrt{\frac{10}{5}} = \log 2 \sqrt{2} = \log 2 + \frac{1}{2} \log 2 \]

\[\sqrt{\frac{10}{5}} = \frac{2}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{2}} \]

\[\log \frac{\sqrt{5}}{\sqrt{2}} = \log \sqrt{5} \cdot \log \frac{\sqrt{2}}{\sqrt{5}} \]

\[\log \sqrt{5} = \frac{1}{2} \log 5 = 0.30103 \]

\[\log \sqrt{2} = \frac{1}{2} \log 2 = 0.15052 \]

\[\log \sqrt{\frac{10}{5}} = \log 2 \sqrt{2} = \log 2 + \frac{1}{2} \log 2 = 0.69897 \]
1. The parallelogram $ABCD$ with $EF \parallel AB$ and $\angle BAD = 60^\circ$ (Figure 1) is often used to create an optical illusion. The viewer is asked which is longer, BE or EC. Suppose $AB = 1$ and $BC = 2$. How long should AE be so that $BE = EC$?

2. The polynomial $p(x)$ has non-negative coefficients; $p(1) = 12$ and $p(20) = 18,081$. Find $p(x)$.

3. Write equations for all lines passing through $(1,-1)$ having an x-intercept that is twice the slope of the line. OR $x + 2y + 1 = 0$

4. The mean of the set of real numbers $\{x_1, x_2, \ldots, x_9\}$ is k. The mean of the set $\{x_1, x_2, \ldots, x_9, 17\}$ is 8. What is k?

5. P is a point in the interior of $\triangle ABC$ that has $AB = 13$, $BC = 7$, and $CA = 8$. The distance from P to the side AB is $\frac{\sqrt{3}}{4}$; its distance to the side BC is $\frac{5\sqrt{3}}{4}$. Find the distance from P to the side AC.

6. Here is a system of three equations in the three unknowns x, y, z.

The unknown x can be written as a single term involving only of a, b, c. Find this term.
1. Since $BF \parallel AE$, $\angle AEB = \alpha$

Since $\triangle BEC$ is isosceles, $\angle BCE = \alpha$

Apply the law of cosines to $\triangle ABE$

$$d^2 = b^2 + l - 2b \cos 60^\circ = b^2 - b$$

Apply the law of cosines to $\triangle CDE$

$$d^2 = a^2 + 1 - 2a \cos 120^\circ = a^2 + 1$$

\[b^2 + l - b = a^2 + 1 + a \]

\[b^2 = a^2 + (a+b) = (2-b)^2 + 2 \]

Solve $b^2 = 4 - 4b + b^2 + 2j$; $b = \frac{3}{2}$

(The figure above, drawn to size, illustrates the optical illusion)

2. Since $p(t) = \text{sum of all coefficients}$, all coefficients ≤ 12

Write 18081 using base 20.

$18081 = 2(20) + 5(20) + 4(20) + 1$

\[p(x) = 2x^3 + 5x^2 + 4x + 1 \]

3.

There appear to be two such lines.

Such a line will have equation

$$y + 1 = m(x - 1)$$

and its y intercept is found by setting $y = 0$. Solving for x, $x = \frac{1 + m}{m}$

We seek m so that $\frac{1 + m}{m} = 2m$. Solve $2m^2 - m - 1 = 0$; $m = -\frac{1}{2}$ or 1

4. \[\frac{x_1 + x_2 + \cdots + x_9 + 17}{10} = 8 \]

We know \[x_1 + x_2 + \cdots + x_9 = 9k \]

\[9k + 17 = 8(8); \quad 9k = 63; \quad k = 7 \]

5. drawing is to scale; $\frac{1}{4} = 1$

Using Heron's formula, $s = \frac{13 + 7 + 8}{2} = 14$

Area $\triangle ABC = \sqrt{14(1)(7)(6)} = 14\sqrt{3}$

Area $\triangle ABP = \frac{1}{2}(3)\frac{\sqrt{3}}{4} = \frac{13\sqrt{3}}{8}$

Area $\triangle ABP = \frac{1}{2}(7)\frac{5\sqrt{3}}{4} = \frac{35\sqrt{3}}{8}$

Area $\triangle ABP = \frac{1}{2}(8)x = 4x$

\[14\sqrt{3} = 4\frac{\sqrt{3}}{4} + 4x \]

\[x = 2\sqrt{3} \]

6. There are many ways to solve this system. An elegant way is to consider

(i) $t^3 - 2t^2 - yt - x = 0$

This equation has roots of $a, b,$ and c, so it can be written in the form

$$(t - a)(t - b)(t - c) = 0$$

Multiply this out;

(ii) $t^3 - (a+b+c)t^2 + (ab+ac+bc)t - abc = 0$

Compare (i) and (ii); $-x = -abc$