Question #1 is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points.
Place your answer to each question on the line provided. You have 12 minutes for this event.

NO CALCULATORS are allowed on this event.

1. If \(x = \frac{1}{2}, \ y = \frac{1}{3}, \) and \(z = \frac{1}{4}, \) determine exactly the value of \(\frac{x}{y-z}. \)

2. Express 0.037037037... as a fraction \(\frac{p}{q}, \) where \(p \) and \(q \) are relatively prime integers.

3. Alice and Bob are the only income earners in their family. In 2012, Alice’s salary grew by 20%, while Bob’s salary dropped by 20%; however, their total family income was unchanged. In 2013, Alice’s income again grew by 20%, while Bob’s income again dropped by 20%. By what percentage did their family income change in 2013? Express your answer as a percent, including a plus sign (+) to indicate an increase, or a minus sign (–) to indicate a decrease.

4. Let \(a, \ b, \) and \(c \) be three positive integers. The greatest common divisor of \(a \) and \(b \) is 2; the greatest common divisor of \(b \) and \(c \) is 6; and the least common multiple of \(a \) and \(c \) is 72. Determine the maximum possible value of \(a + c. \)

Name: ___________________________ Team: ___________________________
NO CALCULATORS are allowed on this event.

1. If \(x = \frac{1}{2}, y = \frac{1}{3}, \) and \(z = \frac{1}{4}, \) determine exactly the value of \(\frac{x}{y - z} \).

\[
\frac{x}{y - z} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{3}{12} = \frac{1}{4} = 6.
\]

2. Express 0.037037037... as a fraction \(\frac{p}{q} \), where \(p \) and \(q \) are relatively prime integers.

\[
0.037037037... = \frac{37}{999} = \frac{37}{9 \cdot 111} = \frac{37}{9 \cdot 3 \cdot 37} = \frac{1}{27}.
\]

3. Alice and Bob are the only income earners in their family. In 2012, Alice’s salary grew by 20%, while Bob’s salary dropped by 20%; however, their total family income was unchanged. In 2013, Alice’s income again grew by 20%, while Bob’s income again dropped by 20%. By what percentage did their family income change in 2013?

Express your answer as a percent, including a plus sign (+) to indicate an increase, or a minus sign (−) to indicate a decrease.

We are not told Alice’s or Bob’s initial salaries, so that must not matter! If \(A \) and \(B \) represent Alice’s and Bob’s pre-2012 salaries, respectively, let’s choose \(A = B = $100 \). (Unrealistic for supporting a family, but nice values to work with percentage-wise.) Then, in 2012, Alice would earn $120, and Bob would earn $80 (family income of $120 + $80 = $200 is unchanged). In 2013, Alice would earn $120 \cdot 1.2 = $144, while Bob would earn $80 \cdot 0.8 = $64. Their family income is now $144 + $64 = $208, an increase of \(\frac{8}{200} = \frac{4}{100} = 4\% \).

4. Let \(a, b, \) and \(c \) be three positive integers. The greatest common divisor of \(a \) and \(b \) is 2; the greatest common divisor of \(b \) and \(c \) is 6; and the least common multiple of \(a \) and \(c \) is 72. Determine the maximum possible value of \(a + c \).

Because \(b \) is divisible by 3, \(a \) cannot be (otherwise their GCD would include a factor of 3). Since \(\text{LCM}(a, c) = 72 \), \(a \) can contain a factor of 8, but not a factor of 16. Thus, \(a \) can only be 2, 4, or 8.

If \(a = 2 \) or 4, then \(c \) must be 72; if \(a = 8 \), then \(c \) could be 72, 36, or 18 (but not 9 ... why?).

Our possible ordered pairs for \((a, c) \) are (2, 72), (4, 72), (8, 72), (8, 36), and (8, 18), so \(a + c \) takes a maximum value of 80.
1. In $\triangle ABC$, $m\angle A = 45^\circ$ and $m\angle B = 30^\circ$ as shown in Figure 1. If $BC = 12$, determine exactly the length AC.

$$AC = \text{__________}$$

2. In Figure 2, lines ℓ_1 and ℓ_2 are parallel, while lines ℓ_3 and ℓ_4 intersect at an angle of 17°. If the acute angle formed by ℓ_1 and ℓ_4 measures 44°, calculate the measure of the obtuse angle between ℓ_1 and ℓ_3.

$$DH = \text{__________}$$

3. Triangles DEF and EGH are both right triangles, with $m\angle D = m\angle GEH = 30^\circ$, as shown in Figure 3. If $EG = 12$, determine exactly the length DH.

$$m\angle TPZ = \text{__________}$$

4. Three congruent isosceles triangles, each with apex angle 11°, are adjoined in alternating fashion with three other congruent isosceles triangles, each with apex angle 19°. This forms octagon $STUVWXYZ$ (Figure 4). If \overline{TY} and \overline{UZ} intersect at P, calculate the measure of $\angle TPZ$.

Name: ___________________________ Team: ___________________________
1. In $\triangle ABC$, $\angle A = 45^\circ$ and $\angle B = 30^\circ$ as shown in Figure 1. If $BC = 12$, determine exactly the length AC.

$AC = 6\sqrt{2}$

Label the foot of the altitude from C as D. $\triangle BCD$ is 30°-60$^\circ$-90$^\circ$ with hypotenuse 12, so $CD = 6$. $\triangle ACD$ is an isosceles right triangle with leg 6, so $AC = 6\sqrt{2}$.

2. In Figure 2, lines l_1 and l_2 are parallel, while lines l_3 and l_4 intersect at an angle of 17°. If the acute angle formed by l_1 and l_4 measures 44°, calculate the measure of the obtuse angle between l_1 and l_3.

Let your eyes find the largest triangle in the diagram. It has acute interior angles measuring 17° and 44°, so its obtuse angle measures $180^\circ - 17^\circ - 44^\circ = 119^\circ$.

$DH = 6\sqrt{3}$

3. Triangles DEF and EGH are both right triangles, with $\angle D = \angle GEH = 30^\circ$, as shown in Figure 3.

If $EG = 12$, determine exactly the length DH.

Using $\triangle EGH$, $GH = 6$ and $HE = 6\sqrt{3}$. $\triangle EFH$ is also 30°-60$^\circ$-90$^\circ$, with $FH = 3\sqrt{3}$ and $EF = 9$. So, looking now at $\triangle DEF$, $DF = 9\sqrt{3}$, and subtracting, $DH = DF - FH = 6\sqrt{3}$.

(Notice that $DH = EH$... so $\triangle DHE$ is isosceles!)

$m\angle TPZ = 165^\circ$

4. Three congruent isosceles triangles, each with apex angle 11°, are adjoined in alternating fashion with three other congruent isosceles triangles, each with apex angle 19°. This forms octagon $STU VWXYZ$ (Figure 4). If \overline{TV} and \overline{UW} intersect at P, calculate the measure of $\angle TPZ$.

First off, it is critical to recognize that $ST = SU = SV = SW = SX = SY = SZ$. This means $\triangle STY$ is isosceles, with apex angle 79° and vertex angles each $(180^\circ - 79^\circ) \div 2 = 50.5^\circ$, and also, $\triangle SUZ$ is isosceles, with apex angle 71° and vertex angles each $(180^\circ - 71^\circ) \div 2 = 54.5^\circ$. Consider quadrilateral $TPZS$:

$m\angle T = 50.5^\circ$, $m\angle 90^\circ$, and $m\angle Z = 54.5^\circ$, so $m\angle TPZ = 360^\circ - (50.5^\circ + 90^\circ + 54.5^\circ) = 165^\circ$.

$\angle TPZ = 165^\circ$
1. Figure 1 shows △ABC with m∠A = 38° and AC = 8 cm. Calculate the length of AB.

2. If \(\sin x = \frac{1}{3} \) and \(\pi < x < \frac{3\pi}{2} \), determine exactly the value of \(\tan x \).

3. A man walks 1000 yards on a straight-line bearing of 25° east of north, and then 800 more yards on a straight-line bearing of 35° east of north. (see Figure 3) Calculate how far north the man ends up from his starting point.

4. A symmetrical “plus” symbol, situated in Quadrant I, is tilted to rest against the x- and y-axes as shown in Figure 4. Given that \(DE = EF = 2, AB = CD = 1 \), and \(m\angle BAX = 25° \), calculate the length OA.

Name: ___________________________ Team: ______________________________
\[AB = 6.304 \text{ cm} \]

1. Figure 1 shows \(\triangle ABC \) with \(m \angle A = 38^\circ \) and \(AC = 8 \text{ cm} \). Calculate the length of \(AB \).

\[
\cos 38^\circ = \frac{\text{adj}}{\text{hyp}} = \frac{AB}{8} \Rightarrow AB = 8 \cdot \cos 38^\circ = 6.304.
\]

\[\tan x = \frac{\sqrt{2}}{4} \]

2. If \(\sin x = \frac{1}{3} \) and \(\pi < x < \frac{3\pi}{2} \), determine exactly the value of \(\tan x \).

See Figure 2, where a reference triangle has been created using a circle of radius 3. By the Pythagorean Theorem, the horizontal leg has length \(\sqrt{3^2 - (-1)^2} = \sqrt{9 - 1} = \sqrt{8} = 2\sqrt{2} \), and because it extends in the negative \(x \) direction, we assign it the value \(-2\sqrt{2} \). Thus \(\tan x = \frac{\text{opp}}{\text{adj}} = \frac{-1}{-2\sqrt{2}} = \frac{\sqrt{2}}{4} \).

\[1561.629 \text{ yards} \]

3. A man walks 1000 yards on a straight-line bearing of 25° east of north, and then 800 more yards on a straight-line bearing of 35° east of north. (see Figure 3.) Calculate how far north the man ends up from his starting point.

Construct right triangles as shown in Figure 3. Then we have \(\sin 65^\circ = \frac{N_1}{1000} \) and \(\sin 55^\circ = \frac{N_2}{800} \), and the man’s northward displacement is \(N_1 + N_2 = 1000 \sin 65^\circ + 800 \sin 55^\circ = 1561.629 \).

\[OA = 3.080 \]

4. A symmetrical “plus” symbol, situated in Quadrant I, is tilted to rest against the \(x \)- and \(y \)-axes as shown in Figure 4. Given that \(DE = EF = 2 \), \(AB = CD = 1 \), and \(m \angle BAX = 25^\circ \), calculate the length \(OA \).

Label point \(M \) as shown in the figure. Then draw \(\overline{MA} \), creating an isosceles right triangle with \(MA = 2\sqrt{2} \). Draw perpendiculars from \(M \) meeting the axes at \(N \) and \(P \). Then \(NA = 2\sqrt{2} \cdot \cos 20^\circ \), and \(PM = ON = 1 \cdot \cos 65^\circ \), so \(OA = ON + NA = \cos 65^\circ + 2\sqrt{2} \cdot \cos 20^\circ = 3.080 \).
Minnesota State High School Mathematics League
2014-15 Meet 1, Individual Event D

Question #1 is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points.
Place your answer to each question on the line provided. You have 12 minutes for this event.

NO CALCULATORS are allowed on this event.

1. Determine exactly the sum of the roots of the cubic polynomial $2x^3 - 9x^2 + 14x - 6$.

$k = 2. \text{ Determine exactly the value of } k \text{ for which the two solutions of } 3x^2 - 4x + k = 0 \text{ are equal.}

\[N = 3. \text{ Let } N \text{ be a positive two-digit number. If the sum of the squares of its digits is equal to 100 times its tens digit minus twice its ones digit, what is } N? \]

\[x = 4. \text{ Determine exactly all real solutions of } x^2 - x = \frac{1}{x^2 - x}. \]

Name: _______________________________ Team: _______________________________
1. Determine exactly the sum of the roots of the cubic polynomial \(2x^3 - 9x^2 + 14x - 6 \).

The sum of the roots is the opposite of the \(x^2 \) coefficient, divided by the leading coefficient: \(\frac{9}{2} \).

2. Determine exactly the value of \(k \) for which the two solutions of \(3x^2 - 4x + k = 0 \) are equal.

When a quadratic equation has two equal roots, the value of its discriminant is 0. Therefore,
\[
(-4)^2 - 4 \cdot 3 \cdot k = 0 \Rightarrow k = \frac{4}{3}.
\]

3. Let \(N \) be a positive two-digit number. If the sum of the squares of its digits is equal to 100 times its tens digit minus twice its ones digit, what is \(N \)?

Let \(A \) be the tens digit of \(N \), and let \(B \) be the ones digit. \(N \) can then be represented by \(N = 10A + B \), with \(A \geq 1 \). According to the relationship described in the problem, \(A^2 + B^2 = 100A - 2B \). Looking at the left side of this relationship, the largest possible value of \(A^2 + B^2 \) is \(9^2 + 9^2 = 162 \). But looking at the right side of the relationship, if \(100A - 2B \leq 162 \), then \(A \) could not be greater than \(1 \); also, an \(A \)-value of 2 or greater would give \(100A - 2B \) a minimum value of 182. Therefore, \(A = 1 \), and \(1 + B^2 = 100 - 2B \Rightarrow B^2 + 2B - 99 = 0 \Rightarrow (B+11)(B-9)=0 \), so \(B = 9 \), and \(N = 19 \).

4. Determine exactly all real solutions of \(x^2 - x = \frac{1}{x^2 - x} \).

Let \(y = x^2 - x \). Then \(y = \frac{1}{y} \Rightarrow y^2 = 1 \Rightarrow y = \pm 1 \). So either \(x^2 - x = -1 \Rightarrow x^2 - x + 1 = 0 \), which has a discriminant of \((-1)^2 - 4(1)(1) = -3 \) and therefore no real roots, or \(x^2 - x = 1 \Rightarrow x^2 - x - 1 = 0 \), which has discriminant \((-1)^2 - 4(1)(-1) = 5 \), and real solutions \(x = \frac{1 \pm \sqrt{5}}{2} \).
1. Two positive integers p and q have a greatest common divisor of 6 and a least common multiple of 120. If $p < q$, list all possible ordered pairs (p, q).

$$(p, q) = \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad$$

2. In Figure 2, isosceles right triangles ADE and BCD are attached to 30°-60°-90° triangle ABE (where $AE > BE$), creating quadrilateral $ABCD$. If $AB = 4$, determine exactly the value of AC^2.

$$AC^2 = \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad$$

3. List one possible ordered pair of positive integers (a, b) such that 243 in base a (243_a) is equal to 1123 in base b (1123_b).

$$(a, b) = \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad$$

4. Fighting a strong wind, a boat sails from X to a location Y (due east of X), alternating course between bearings of 26° north of east and 26° south of east (see Figure 4). If the boat travels a total of 5000 yards, calculate the straight-line distance from X to Y.

$$yds \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad$$

5. What is the integer value of k for which the cubic polynomial $x^3 - 5x^2 + kx + 9$ has two equal rational roots?

$$k = \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad$$

6. In Figure 6, segments \overline{PQ} and \overline{RS} intersect at T. All seven line segments in the figure have integer side lengths. If $PS = 37$, determine exactly the largest possible length for \overline{PQ}.

$$PQ = \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad$$

Team: ________________________________
1. Two positive integers \(p \) and \(q \) have a greatest common divisor of 6 and a least common multiple of 120. If \(p < q \), list all possible ordered pairs \((p, q)\).

\((p, q) = (6, 120) \text{ or } (24, 30)\)

Graders: award 2 points per correct value given; deduct 1 point for each incorrect value.

2. In Figure 2, isosceles right triangles \(ADE \) and \(BCD \) are attached to 30\(^\circ\)-60\(^\circ\)-90\(^\circ\) triangle \(ABE \) (where \(AE > BE \)), creating quadrilateral \(ABCD \). If \(AB = 4 \), determine exactly the value of \(AC^2 \).

\[AC^2 = 56 + 16\sqrt{3} \]

3. List one possible ordered pair of positive integers \((a, b)\) such that \(243 \) in base \(a \) \((243_a) \) is equal to \(1123 \) in base \(b \) \((1123_b) \).

\((a, b) = (8, 5) \text{ or } (84, 24) \text{ or others}\)

Graders: use the fact that \(2a(a+2) = b(b^2+b+2) \) to verify student answers.

4. Fighting a strong wind, a boat sails from \(X \) to a location \(Y \) (due east of \(X \)), alternating course between bearings of 26\(^\circ\) north of east and 26\(^\circ\) south of east (see Figure 4). If the boat travels a total of 5000 yards, calculate the straight-line distance from \(X \) to \(Y \).

\[4493.970 \text{ yds} \]

5. What is the integer value of \(k \) for which the cubic polynomial \(x^3 - 5x^2 + kx + 9 \) has two equal rational roots?

\[k = 3 \]

6. In Figure 6, segments \(\overline{PQ} \) and \(\overline{RS} \) intersect at \(T \). All seven line segments in the figure have integer side lengths. If \(PS = 37 \), determine exactly the largest possible length for \(\overline{PQ} \).

\[PQ = 91 \]
SOLUTIONS (page 2)

1. Let \(p = 6m \) and \(q = 6n \). Because \(pq = \text{GCD}(p,q) \cdot \text{LCM}(p,q) \), we have \((6m)(6n) = 6 \cdot 120 \Rightarrow mn = 20. m < n, \) so the possible ordered pairs \((m,n)\) are \((1, 20), (2, 10), \) and \((4, 5) \ldots \) but be careful! If \(m = 2, n = 10, \) then \(p \) and \(q \) will share another factor of \(2, \) and their GCD would be \(12, \) not \(6. \) \((m,n) = (1, 20) \) or \((4, 5) \) \(\Rightarrow \) \((p, q) = \left(\frac{6}{120}\right) \) or \((24, 30)\).

2. See Figure 2. After drawing \(AC, \) extend \(AE \) to meet the perpendicular from \(C \) at \(F, \) creating right triangle \(AFC. \) Using \(30^\circ-60^\circ-90^\circ \) triangle \(ABE, \) we have \(EB = FC = 2, AE = DE = 2\sqrt{3}, \) and \(EF = BC = DE + EB = 2\sqrt{3} + 2. \) So \(AF = AE + EF = 4\sqrt{3} + 2, \) and by the Pythagorean Theorem, \(AC^2 = AF^2 + FC^2 = \left(4\sqrt{3} + 2\right)^2 + 2^2 = \left(48 + 16\sqrt{3} + 4\right) = 56 + 16\sqrt{3}. \) \((\triangle ADC \text{ is also a right triangle, and can be used with } AD = 2\sqrt{6} \text{ and } DC = 2\sqrt{6} + 2\sqrt{2} \text{ to obtain the same result.})\)

3. If \(\left(\frac{243}{3}, \frac{1123}{3}\right) \), then \(2a^2 + 4a + 3 = b^2 + b + 2b + 3 \Rightarrow 2a^2 + 4a = b^2 + b^2 + 2b \Rightarrow 2a(a + 2) = b(b^2 + b + 2). \) We have some additional clues: (1) the greatest digit appearing in the base-\(a \) representation of \(243 \) is \(4, \) so \(a \geq 5; \) (2) the greatest digit appearing in the base-\(b \) representation of \(1123 \) is \(3, \) so \(b \geq 4; \) and (3) \(\left(\frac{1123}{3}\right) \) occupies more place values than \(\left(\frac{243}{3}\right), \) so \(b < a. \) One possible solution technique is to use increasing values of \(a, \) starting with \(5, \) and see if the resulting cubic equation in \(b \) has an integer solution with \(b \geq 4: 2\left(\frac{3}{2}\right)^2 + 4\left(\frac{3}{2}\right) = b^2 + b^2 + 2b - 70 = 0 \Rightarrow b = 3.665; \) \(a = 6 \Rightarrow b^2 + b^2 + 2b - 96 = 0 \Rightarrow b = 4.134; \) \(a = 7 \Rightarrow b^2 + b^2 + 2b - 126 = 0 \Rightarrow b = 4.577; \) \(a = 8 \Rightarrow b^2 + b^2 + 2b - 160 = 0 \Rightarrow b = 5; \) so one possible pair \((a,b)\) is \(\left(\frac{8}{5}\right). \) \((a, b) = (84, 24) \text{ also works, as may others.}\)

4. No matter how many turns the boat takes, it will eventually have to cover an equal distance bearing north of east as it does bearing south of east. This is because we can treat the boat’s individual movements as vectors, rearranging them to form the isosceles triangle shown in the figure below. \(\cos 26^\circ = \frac{1}{2} \cdot \frac{XY}{2500} \Rightarrow XY = 5000 \text{ cos } 26^\circ = 4493.970 \) yards.

5. By the Rational Roots Theorem, the only possible rational roots of \(x^3 - 5x^2 + kx + 9 \) are \(\pm 1, \pm 3, \) and \(\pm 9. \) For each possibility, use synthetic division, set the remainder equal to 0 to determine the value of \(k \) necessary for the \(x \)-value to be a root, and then see if that value of \(k \) results in a quadratic polynomial that either has the same root or is a perfect square itself:

\[
\begin{array}{cccc}
1 & 1 & -5 & k \\
1 & -k & 9 \\
\end{array} \Rightarrow k = -5 \Rightarrow x^2 - 4x + 9 = 0 \quad -1 \quad 1 \quad -5 & k
1 & 9 \\
1 & -6 & k + 6 \\
\end{array} \Rightarrow k = 3 \Rightarrow x^2 - 6x + 9 = (x - 3)^2 = 0,
\]

so \(k = 3 \) causes the original cubic to have two equal rational roots \((x = 3, \text{ multiplicity } 2).\)

6. The only Pythagorean triple with hypotenuse 37 is \(12/35/37. \) The figure may not be to scale; i.e., we don’t know whether \(SR > PR \) or vice versa. If \(PR = 35, \) then \(\triangle PRT \text{ causes us to seek Pythagorean triples with one leg of length } 35 \text{ and the other leg } RT < 12 \text{ and as short as possible (so that } PQ \text{ will be as long as possible). Unfortunately, such a triple would have to be of the form } x/35/36, \) and does not exist. So \(PR = 12 \text{ and } SR = 35. \) Now in \(\triangle PRT, \) we need triples with one leg of length 12, and the other leg \(RT < 35 \text{ and as short as possible. Hopefully } 5/12/13 \text{ comes to mind, so that } RT = 5, \text{ ST} = 30, \text{ and } PT = 13. \) Finally, in \(\triangle STQ, \) we seek the triple with short leg 30 and longest possible hypotenuse: \(30/72/78 \Rightarrow PT + TQ = 91. \)