2018-19 Meet 3, Individual Event A

Question #1 is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points.
Place your answer to each question on the line provided. You have 12 minutes for this event.

1. Determine exactly the coordinates of the intersection of the lines
\[\frac{x}{5} + \frac{y}{2} = 1 \text{ and } \frac{-3x}{4} + \frac{y}{2} = 1. \]

2. Determine exactly the ordered triple \((x, y, z)\) that satisfies this system of equations:
\[
\begin{align*}
7x + 2y - 4z &= 19 \\
5x + 3y - 3z &= 15 \\
5x - 3y + 3z &= 15
\end{align*}
\]

3. Apples and melons are on sale at the local farmers’ market. Elaine buys 10 apples and 5 melons, pays with $10.00 and receives change. Xi buys 5 apples and 10 melons, pays with $10.00 and also receives change. Elaine and Xi give me their change and I add 10 cents and buy 3 apples and 1 melon, receiving 2 cents in change. Jorge buys 20 apples and 20 melons with $25.00 and receives $1.00 in change. How much does each apple cost?

4. A pedestrian and a cyclist leave point A for point B simultaneously at 10:00. Reaching point B, the cyclist immediately turns around and, while returning to point A, passes the pedestrian at 10:20. When the cyclist reaches point A again, she immediately turns around and catches up to the pedestrian at 10:30. If the cyclist and the pedestrian each traveled at a uniform rate, what time will it be when the pedestrian finally reaches point B?
1. Determine exactly the coordinates of the intersection of the lines

\[
\frac{x}{5} + \frac{y}{2} = 1 \quad \text{and} \quad \frac{-3x}{4} + \frac{y}{2} = 1.
\]

Notice: \(\frac{x}{5} = \frac{-3x}{4} \Rightarrow x = 0. \) Then \(\frac{y}{2} = 1 \Rightarrow y = 2. \)

2. Determine exactly the ordered triple \((x, y, z)\) that satisfies this system of equations:

\[
\begin{align*}
7x + 2y - 4z &= 19 \quad \text{Adding the last two equations gives} \\
5x + 3y - 3z &= 15 \quad 10x = 30 \Rightarrow x = 3. \ \text{Substituting } x = 3 \text{ into the} \\
5x - 3y + 3z &= 15 \quad \text{second equation gives} \ 3y - 3z = 0 \Rightarrow y = z. \\
\end{align*}
\]

Substituting into the first equation gives

\[
21 + 2y - 4y = 0 \Rightarrow -2y = -2 \Rightarrow y = 1. \ \text{So } z = 1.
\]

3. Apples and melons are on sale at the local farmers’ market. Elaine buys 10 apples and 5 melons, pays with $10.00 and receives change. Xi buys 5 apples and 10 melons, pays with $10.00 and also receives change. Elaine and Xi give me their change and I add 10 cents and buy 3 apples and 1 melon, receiving 2 cents in change. Jorge buys 20 apples and 20 melons with $25.00 and receives $1.00 in change. How much does each apple cost?

The equations are: \(10A + 5M + x = 10, \ 5A + 10M + y = 10, \ 3A + 1M = x + y + .08, \) and \(20A + 20M = 24. \) Adding the first two gives: \(15A + 15M + x + y = 20. \) Solving the third for \(x + y\) and substituting gives: \(18A + 16M = 20.08\) and solving by elimination with the last equation gives \(A = .44\).

4. A pedestrian and a cyclist leave point A for point B simultaneously at 10:00. Reaching point B, the cyclist immediately turns around and, while returning to point A, passes the pedestrian at 10:20. When the cyclist reaches point A again, she immediately turns around and catches up to the pedestrian at 10:30. If the cyclist and the pedestrian each traveled at a uniform rate, what time will it be when the pedestrian finally reaches point B?

Let \(x = \) the distance from A to B and \(y = \) the distance the pedestrian travelled in 20 minutes. If the rate of the cyclist is \(C\) and the rate of the pedestrian is \(P,\) then

\[
x + (x - y) = 2x - y = (C)(20) \quad \text{and} \quad y = (P)(20).
\]

In the next 10 minutes, the pedestrian travels a distance of \(\frac{y}{2}. \) So

\[
2y + \frac{y}{2} = (C)(10) \quad \text{and} \quad \frac{y}{2} = (P)(10).
\]

Combining the last three equations gives \(C = 5P. \) Substituting this into the first equation gives

\[
2x - 20P = 5P(20) \Rightarrow 2x = 120P \Rightarrow \frac{x}{P} = 60. \ \text{Therefore, it will be 11:00.}\]
Minnesota State High School Mathematics League

2018-19 Meet 3, Individual Event B

Question #1 is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. If the areas of an equilateral triangle and a square are equal, determine exactly the ratio of the side of the square to the side of the triangle. Express your answer in the form \((\frac{a}{b})^c\).

2. Given a \(3 \times 3 \times 3\) cube, a \(1 \times 1 \times 1\) cube is cut out of the middle of each face. What is the surface area of the resulting solid?

\[\text{MN} = \text{_______________________] \]

\[\text{If the areas of an equilateral triangle and a square are equal, determine exactly the ratio of the side of the square to the side of the triangle. Express your answer in the form } \left(\frac{a}{b}\right)^c.\]

3. \(ABCD\) is a square whose side length is 32. \(DMBN\) is a rhombus whose vertices lie on the diagonals of the square. If the area of the rhombus is 75% of the area of the square, determine exactly the length of \(MN\).

4. The solid shown in Figure 4 has a rectangular base \(BEFC\) with equilateral triangles \(ABC\) and \(DEF\) tilting toward each other. If \(M\) and \(N\) are the midpoints of \(BC\) and \(EF\), then \(\angle AMN = \angle DNM = 60^\circ\). If \(BC = 4\sqrt{3}\) and \(CF = 28\), determine exactly the volume of the solid.

\[\text{Figure 3}\]

\[\text{Figure 4}\]
SOLUTIONS

1. If the areas of an equilateral triangle and a square are equal, determine exactly the ratio of the side of the square to the side of the triangle. Express your answer in the form \(\left(\frac{a}{b} \right)^c \).

Let the side of the triangle have length \(s \) and the side of the square have length \(x \). Then

\[
\frac{s^2 \sqrt{3}}{4} = x^2 \Rightarrow x^2 = \frac{\sqrt{3}}{4} s^2 \Rightarrow x = \frac{\sqrt{3}}{2} s = \frac{3^{\frac{3}{4}}}{2} = \left(\frac{3}{16} \right)^{\frac{3}{4}}.
\]

2. Given a \(3 \times 3 \times 3 \) cube, a \(1 \times 1 \times 1 \) cube is cut out of the middle of each face. What is the surface area of the resulting solid?

The \(1 \times 1 \) square on the face of the cube is dropped 1 unit into the cube and the four sides of the cut out hole add four square units to each face of the cube. So the resulting surface area is \(6 \cdot 9 + 6 \cdot 4 = 78 \) square units.

3. \(ABCD \) is a square whose side length is 32. \(DMBN \) is a rhombus whose vertices lie on the diagonals of the square. If the area of the rhombus is 75\% of the area of the square, determine exactly the length of \(MN \).

\[
\frac{1}{2} (MN)(DB) = .75(32)^2 \Rightarrow (MN)(32\sqrt{2}) = 1536 \Rightarrow MN = \frac{48}{\sqrt{2}} = 24\sqrt{2}.
\]

4. The solid shown in Figure 4 has a rectangular base \(BEFC \) with equilateral triangles \(ABC \) and \(DEF \) tilting toward each other. If \(M \) and \(N \) are the midpoints of \(BC \) and \(EF \), then \(\angle AMN = \angle DNM = 60^{\circ} \). If \(BC = 4\sqrt{3} \) and \(CF = 28 \), determine exactly the volume of the solid.

Drop an altitude \(\overline{AT} \perp BEFC \). \(\overline{AM} \), the altitude of \(\triangle ABC \), has a length of 6.

\(AMT \) is a 30-60-90 triangle, so \(MT = 3 \) and \(AT = 3\sqrt{3} \). Similarly, drop an altitude \(\overline{DS} \perp BEFC \). \(NS = 3 \) and \(DS = 3\sqrt{3} \). Using vertical cuts through \(A \) and \(D \), slice the solid into a prism \(AWXYZD \) and two congruent pyramids with rectangular bases. The volume of the solid then is

\[
\frac{(4\sqrt{3}) \cdot (3\sqrt{3})}{2} \cdot 22 + 2 \left(\frac{1}{3} \right) \left(4\sqrt{3} \right) (3) \cdot 3\sqrt{3} = 468.
\]
1. \(z = 1 + 6i \). \(w = z \cdot \bar{z} \), where \(\bar{z} \) is the conjugate of \(z \). Determine exactly the value of \(w \).

2. If \(z = \text{cis}(30^\circ) \), determine exactly the value of \(z^3 + \frac{1}{\bar{z}^3} \).

\((z = r\text{cis}(\theta) \) is shorthand notation for the complex number \(z = r \cos \theta + r \sin \theta \).

3. If \(\cos(\arctan(x)) = x \), then \(x^2 \) can be expressed exactly in the form \(\frac{a + \sqrt{b}}{2} \).

Calculate \(a + b \).

4. Determine exactly, in terms of radians, the value of \(\arctan(2 - \sqrt{3}) + \arctan(2 + \sqrt{3}) + \arctan(\sqrt{3}) \).
1. \(z = 1 + 6i \). \(w = z \cdot \overline{z} \), where \(\overline{z} \) is the conjugate of \(z \). Determine exactly the value of \(w \).

\[
w = (1 + 6i)(1 - 6i) = 1 - 6i + 6i - 36i^2 = 37.
\]

2. If \(z = cis(30^\circ) \), determine exactly the value of \(z^3 + \frac{1}{z^3} \).

\[
(z = rcis(\theta) \) is shorthand notation for the complex number \(z = r \cos \theta + r \sin \theta i \).
\]

\[
z^3 + \overline{z^3} = cis(90^\circ) + cis(-90^\circ) = \cos 90^\circ + i \sin 90^\circ + \cos(-90^\circ) + i \sin(-90^\circ) = 0 + i0 - i0 = 0.
\]

3. If \(\cos(\arctan(x)) = x \), then \(x^2 \) can be expressed exactly in the form \(\frac{a + \sqrt{b}}{2} \). Calculate \(a + b \).

\[
\text{Let } A = \arctan x. \text{ Then } \cos A = x \text{ and } \tan A = x. \text{ Consider right triangle } ABC, \text{ with hypotenuse of length 1. Since } \cos A = x, \ AC = x. \text{ Since } \tan A = x, \ BC = x^2.
\]

Therefore, \(x^2 + (x^2)^2 = 1 \implies y + y^2 = 1 \implies y^2 + y - 1 = 0 \). So \(y = x^2 = \frac{-1 + \sqrt{5}}{2} \)

and \(a + b = -1 + 5 = 4 \).

4. Determine exactly, in terms of radians, the value of \(\arctan(2 - \sqrt{3}) + \arctan(2 + \sqrt{3}) + \arctan(\sqrt{3}) \).

\[
\text{Let } A = \arctan(2 - \sqrt{3}) \text{ and } B = \arctan(2 + \sqrt{3}). \text{ Then } \tan A = 2 - \sqrt{3} \text{ and } \tan B = 2 + \sqrt{3}. \text{ Let } x = A + B.
\]

Then \(\tan x = \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{2 - \sqrt{3} + 2 + \sqrt{3}}{1 - (2 - \sqrt{3})(2 + \sqrt{3})} = \frac{4}{1 - (4 - 3)} = \frac{4}{0} \). Therefore, \(x = \frac{\pi}{2} \). Let \(C = \arctan(\sqrt{3}) \). Then \(\tan C = \sqrt{3} \implies C = \frac{\pi}{3} \). So the value of the expression is \(\frac{\pi}{2} + \frac{\pi}{3} = \frac{5\pi}{6} \).
1. Determine exactly the value of \(\left(\frac{1}{64} \right)^{-\frac{1}{2}} + \left(\frac{1}{64} \right)^{-\frac{1}{3}} + \left(\frac{1}{64} \right)^{-\frac{1}{4}} \).

2. Determine exactly the value of \(\log_{12} 24 \cdot \log_{12} 72 \).

3. Let \(Q = \log_{3} 15 \). If the number \(\log_{3} 375 \) can be determined exactly in the form \(a \cdot Q + b \), for some integers \(a \) and \(b \), determine \(a \) and \(b \).

4. Let \(b = 3^{25} \). Determine exactly the value of \(x \), \(x \neq 1 \), given that \(\sqrt[\log_b x]{} = \log_{\sqrt[\log_b x]{} b} x + \log_b \sqrt{x} \).
1. Determine exactly the value of \(\left(\frac{1}{64} \right)^{-\frac{1}{4}} + \left(\frac{1}{64} \right)^{\frac{1}{4}} + \left(\frac{1}{64} \right)^{-\frac{1}{4}} \).

\[
64 + \sqrt[4]{64} + \sqrt[4]{64} = 64 + 8 + 4 + 2 = 78.
\]

2. Determine exactly the value of \(\log_{12} 24 + \log_{12} 72. \)

This is equal to \(\log_{12} (24 \cdot 72) = \log_{12} ((12 \cdot 2)(12 \cdot 6)) = \log_{12} (12^2 \cdot 2 \cdot 6) = \log_{12} (12^3) = 3. \)

3. Let \(Q = \log_3 15. \) If the number \(\log_3 375 \) can be determined exactly in the form \(a \cdot Q + b, \) for some integers \(a \) and \(b, \) determine \(a \) and \(b. \)

\[
Q = \log_3 3 + \log_3 5 = 1 + \log_3 5. \text{ So } \log_3 5 = Q - 1. \text{ But } \log_3 375 = \log_3 3 + \log_3 125 = 1 + 3(Q - 1) = 3Q - 2. \text{ Therefore, } a = 3 \text{ and } b = -2.
\]

4. Let \(b = 3^{25}. \) Determine exactly the value of \(x, \ x \neq 1, \) given that

\[
\sqrt{\log_b x} = \log_b x + \log_b \sqrt{x}.
\]

\[
\sqrt{\log_b x} = \frac{\log_b x}{\log_b \sqrt{b}} + \log_b \left(x^{\frac{1}{2}} \right). \text{ Let } m = \log_b x. \text{ Then } \sqrt{m} = \frac{m}{2} + \frac{1}{2}m \Rightarrow \sqrt{m} = \frac{5m}{2} \Rightarrow \frac{25}{4}m^2 \Rightarrow 0 = \frac{25}{4}m^2 - m \Rightarrow 0 = m \left(\frac{25}{4}m - 1 \right) \Rightarrow m = 0 \text{ or } m = \frac{4}{25}. \text{ } m = 0 \text{ is extraneous because it causes } x \text{ to equal 1. Therefore, } \log_b x = \frac{4}{25}, \ x = b^{\frac{4}{25}} \Rightarrow x = \left(3^{25} \right)^{\frac{4}{25}} = 3^4 = 81.\]
1. The intersections of the lines $3x - 2y = -5$, $x + 4y = 17$, and $9x + 8y = 125$ determine the vertices of a triangle. Determine exactly the area of this triangle.

2. $ABCDEFG$ is a regular heptagon with side length of 1. Let length of AD equal x. Write an expression for the length of GE in terms of x.

3. In $\triangle ABC$, if $\cos A = 2018 \cos B \cos C$ and $\sin A = 2018 \sin B \sin C$, determine exactly the value of $\tan A$.

4. In a regular pentagon $ABCDE$, the ratio of the area of $\triangle ACE$ to the area of $\triangle CDE$ can be written as $k \sin \theta$. Compute the ordered pair (k, θ), where acute angle θ is in degrees.

5. Let $A = \left(\frac{1}{1} \right) \cdot \left(\frac{1}{2} \right) \cdot \left(\frac{1}{3} \right) \cdot \ldots \cdot \left(\frac{1}{8} \right)$. Compute the least positive integer n such that A^n is an integer.

6. Given that $\log_2 \left(\log_2 (x) \right) = \log_{16} \left(\log_{16} (x) \right)$ for some $x > 1$, determine exactly the value of $\log_4 \left(\log_4 (x) \right)$. Express answer as a quotient of two relatively prime integers.

Team: ____________________________
1. The intersections of the lines $3x - 2y = -5$, $x + 4y = 17$, and $9x + 8y = 125$ determine the vertices of a triangle. Determine exactly the area of this triangle.

2. $ABCDEFG$ is a regular heptagon with side length of 1. Let length of AD equal x. Write an expression for the length of GE in terms of x.

Graders: To check any alternate answers, on your calculators, store "1 + 2 cos(360 / 7)" into x and press enter. Then type in the student's expression and press enter. If you get 1.8019377, their answer is correct.

3. In $\triangle ABC$, if $\cos A = 2018 \cos B \cos C$ and $\sin A = 2018 \sin B \sin C$, determine exactly the value of $\tan A$.

4. In a regular pentagon $ABCDE$, the ratio of the area of $\triangle ACE$ to the area of $\triangle CDE$ can be written as $k \sin \theta$. Compute the ordered pair (k, θ), where acute angle θ is in degrees.

5. Let $A = \left(1^1\right) \cdot \left(2^2\right) \cdot \left(3^3\right) \cdots \left(8^8\right)$. Compute the least positive integer n such that A^n is an integer.

6. Given that $\log_2 (\log_2 (x)) = \log_{16} (\log_{16} (x))$ for some $x > 1$, determine exactly the value of $\log_4 (\log_4 (x))$. Express answer as a quotient of two relatively prime integers.
1. The three intersections of the three pairs of lines are (1,4), (5,10), (13,1). Let \[A = \begin{bmatrix} 1 & 4 & 1 \\ 5 & 10 & 1 \\ 13 & 1 & 1 \end{bmatrix} \] and use determinants to find the area: \(\text{abs} \left(\frac{1}{2} \cdot \text{det}([A]) \right) = 42. \)

2. Because of the symmetry of the regular heptagon, \(AD = AE = GD = x \). All isosceles trapezoids are cyclic, so use Ptolemy’s Theorem: \(AG \cdot DE + GE \cdot AD = AE \cdot GD \Rightarrow 1 \cdot 1 + GE \cdot x = x \cdot x \Rightarrow GE = \frac{x^2 - 1}{x}. \)

3. Subtract the two equations:
\[
\cos A - \sin A = 2018(\cos B \cos C - \sin B \sin C)
= 2018 \cos(B + C)
= 2018 \cos(\pi - A)
= -2018 \cos A.
\]
Therefore, \(2019 \cos A = \sin A \Rightarrow 2019 = \frac{\sin A}{\cos A} \Rightarrow \tan A = 2019. \)

4. See labels in Figure 4.1. \[
\begin{bmatrix} \text{ACE} \\ \text{CDE} \end{bmatrix} = \frac{1}{4} x^2 \sin 36^\circ = \frac{1}{2} x^2 \sin 36^\circ = \frac{x^2 \sin 36^\circ}{2 \sin 36^\circ \cos 36^\circ} = \frac{x^2}{2 \cos 36^\circ}. \]
By the Law of Cosines,
\[
x^2 = 1^2 + 1^2 - 2 \cdot 1 \cdot \cos 108^\circ = 2 + 2 \cos 72^\circ = 2 + 2(2 \cos^2 36^\circ - 1) = 2 + 4 \cos^2 36^\circ - 2 = 4 \cos^2 36^\circ. \]
Therefore,
\[
\frac{\text{ACE}}{\text{CDE}} = \frac{4 \cos^2 36^\circ}{2 \cos 36^\circ} = 2 \cos 36^\circ = 2 \sin 54^\circ.
\]

5. \(A = 2^\frac{1}{2} \cdot 3^\frac{1}{4} \cdot (2^\frac{1}{3} \cdot 5^\frac{1}{5} \cdot 7^\frac{1}{7})^\frac{1}{3} = 2^{\frac{1}{2} + \frac{1}{3} + \frac{1}{7}} \cdot 3^{\frac{1}{4}} \cdot 5^{\frac{1}{5}} \cdot 7^{\frac{1}{7}} = 2^{\frac{11}{14}} \cdot 3^{\frac{1}{4}} \cdot 5^{\frac{1}{5}} \cdot 7^{\frac{1}{7}}. \)
Therefore,
\(n = \text{lcm}(24, 2, 5, 7) = 840. \)

6. Let \(y = \log_4 (\log_4 x) \). Using Change of Base Law twice:
\[
\log_2 (\log_2 x) = \frac{\log_4 (\log_4 x)}{\log_4 2} = \frac{\log_4 (\log_4 x)}{\frac{1}{2}} = 2 \log_4 (2 \log_4 x) = 2(\log_4 2 + \log_4 (\log_4 x)) = 2\left(\frac{1}{2} + y\right) = 1 + 2y.
\]
\[
\log_{16} (\log_{16} x) = \frac{\log_4 (\log_{16} x)}{\log_4 16} = \frac{\log_4 (\log_{16} x)}{2} = \frac{1}{2} \log_4 \left(\frac{1}{2} \log_4 x\right) = \frac{1}{2} \left(\log_4 \frac{1}{2} + \log_4 (\log_4 x)\right) = \frac{1}{2} \left(-\frac{1}{2} + y\right) = -\frac{1}{4} + \frac{1}{2} y.
\]
Therefore, \(1 + 2y = -\frac{1}{4} + \frac{1}{2} y \Rightarrow 4 + 8y = -1 + 2y \Rightarrow y = -\frac{5}{6}. \)