Atoms bond to other atoms
- Atoms bonded together make up molecules (intramolecular)

Molecules can also “bond” to other molecules
- Intermolecular Forces attract to each other

Polar and Non-polar Covalent Bonds Review
1. Non-polar Covalent Bonds
 - Electrons are shared equally
 - Electronegativity differences are less than 0.5
2. Polar Covalent Bonds
 - Electrons are shared unequally
 - Electronegativity differences are ≥ 0.5
 - Polar – Two ends that are oppositely charged of one another.

Polar Molecules are called Dipolar
- Dipole means a pair of charges (+ and -)
- Di means two...so 2 opposite poles
- The larger the EN difference, the stronger the polarity
- Partial charges are represented by a lower-case delta symbol
 - \(\delta^+ \)
 - \(\delta^- \)

Dipolar Molecules
- Example = Water (Oxygen EN = 3.4, Hydrogen EN = 2.2)
- The atom with the greatest electronegativity has the negative dipole(s) (\(\delta^- \))
- The atom with the smallest electronegativity has the positive dipole(s) (\(\delta^+ \))
Why does it matter if a molecule is polar?

- Chemical and physical properties of a molecule depend on its polarity.
- Why are N_2 & O_2 gases?
- Chemical and physical properties are dependent on:
 - The polarity of each bond AND
 - The orientation of the bond.
 - CO_2 vs. H_2O

Intermolecular Forces

- Attractive forces between molecules
- Weaker than ionic or covalent bonds
- 1. Dipole - Dipole ($\delta^+ - \delta^-$)
- 2. London / Dispersion Forces

Dipole-Dipole

- Attraction of polar molecules of another molecule
- Stronger polarity = Stronger Dipole Force
 - **Dipole Force** (Allows for solids & liquids)

Why do polar molecules have higher boiling and melting points?

- Breaks
- Temperature is a measure of kinetic energy
 - Energy in motion
 - Relatively Strong Bond \rightarrow Higher KE \rightarrow \uparrow Temp
Hydrogen Bonds

• Specific kind of Dipole-Dipole
• Have strong dipole-dipole force
• Two reasons
 1. Large EN difference
 2. Partially exposed proton
• Not a bond between atoms
 • Hydrogen end of one molecule "bonds" to the high EN atom of another molecule.
 • High EN Atoms = O, N, F, Cl
• Common Examples
 • H₂O & DNA

Hydrogen bonds explain the unique properties of water:
• Surface Tension
• Adhesion
• Cohesion
• Less density as a solid
• High Boiling / Melting Points

London / Dispersion Forces

• ALWAYS exist but are usually covered up by other forces
• Only force that exists for non-polar molecules
• Instantaneous attractions between molecules.
 • Temporary Dipoles
 • Electrons are moving within their orbitals
 • Random movements will cause instantaneous moments of polarity
• Weaker than Dipole-Dipole
• Examples = O₂, N₂, H₂

London dispersion forces - Very weak attraction

• Very low temperatures are required to allow the bonds to hold.
• Nitrogen liquefies @ -321°F
• Why so low?
 • Too much Kinetic Energy @ Room Temperature
• Weak Bond → Temperatures
Intermolecular Forces Review

- Dipole-Dipole forces
 - Only occurs between POLAR molecules
 - Hydrogen bonds
 - Between Hydrogen and atom on another molecule
- London dispersion forces
 - Always exist (so both polar and non-polar)
 - The only force between NON-POLAR molecules

Shape can influence polarity!

- Even if you conclude that a molecule should be polar based on the difference in Electronegativities, the molecular shape might negate these charges.
 - Therefore, a molecule that appears to be polar may actually non-polar
 - For example, CO$_2$
 - So, a non-polar molecule could actually have polar bonds

\[\text{CO}_2 \]

Electronegativity Difference = 3.4 - 2.6 = 0.8
- Conclusion = Polar

BUT - CO$_2$ is NON-POLAR!
- Why?

So, what about CO$_2$?

If the polar forces are treated as vectors, what’s the consequence?

\[\text{CO}_2 \]

- Nothing!
- They Cancel!
- Therefore, It’s non-polar
As a result of vectors

- **Bent and Trigonal Pyramidal** molecules are **ALWAYS polar**.
 - Even if the individual bonds are non-polar
 - Why? Symmetry isn’t possible with the unshared pairs

- **Linear, Trigonal Planar, and Tetrahedral** can be **polar or non-polar**
 - **To be non-polar**, they can
 - Either have small EN differences (less than 0.5), OR...
 - Polar bonds that CANCEL out. This can happen when...
 1. All of the elements on the outside of the molecule are the same.
 2. Equal & opposite attraction
 - **To be polar**
 1. They must have polar bonds that do NOT cancel each other out.

Quick rules to determine non-polar vs polar molecules

- Determine shape
- Bent or trigonal pyramidal always polar
- If there is symmetry in the molecule so that the polarity of the molecule cancels out, then the molecule is non-polar
 - Examples - CO₂ and CCl₄
 - Everything around central atom is the same
- If there are polar bonds but there is no symmetry such that they do not cancel each other out, the overall charge is polar.
 - Examples – CH₃Cl
 - Everything around the outside is not the same

Practice Problems

- **CCl₄**
 - Polar or non-polar bonds?
 - Polar or non-polar molecule?
 - Shape?
- **O₂**
 - Polar or non-polar?
 - Shape?
 - What type of intermolecular force?
- **HCl**
 - Polar or non-polar molecule?
 - What type of intermolecular force?
- **H₂O vs CO₂**
 - Polar or non-polar bonds?
 - Two differences
 - Intermolecular forces and shape
Vectors

Vector - A quantity that has both magnitude and direction
- An arrow

1. **If I traveled on Vector 1 (1049.5 miles @ 169.5°) where would I be?**

2. **What if I get bored and travel on Vector 2 (1049.5 miles @ 349.5°)? Where will I be?**

Vectors can be broken down...

\[\text{Vector} = V_y + V_x + V_z (3D) \]

Vectors can be added

If an individual traveled on the following two vectors, where would they end up?

(Plot one vector at the end of the other vector)